

(2) First, draw it, then make a conclusion

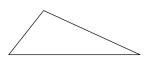
🗌 (a)	I know that	because
_	\overline{BL} bisects \overline{AS} at point T	It is given

🗌 (b)	I know that	because
	\overline{BL} bisects $\angle ABS$	It is given
-		
-		

(c)	I know that	because
	Alternate interior angles ABC and BCD are congruent	It is given
-		

(3) Triangles and Quadrilaterals

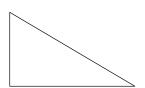
(1) Use a compass and straightedge OR tracing paper/plastic to make quadrilaterals



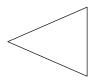
cies and dry erase

markers

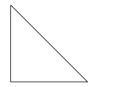
A **parallelogram** is a 4 sided shape with opposite sides parallel. Why do we get a **parallelogram** when we rotate any triangle around the midpoint of one of its sides?



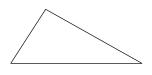
A **rectangle** is a 4 sided shape with 4 right angles. Why do we get a **rectangle** when we rotate a right triangle around the midpoint of its hypotenuse?



A **rhombus** is a 4 sided shape with 4 equal sides. Why do we get a **parallelogram** if we rotate an isosceles triangle around the midpoint of its base?



A **square** is a 4 sided shape with 4 equal sides and 4 right angles. Why do we get a **square** when we rotate an isosceles right triangle around the midpoint of its hypotenuse?

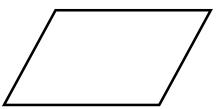


A **kite** is a 4 sided shape with 2 pairs of adjacent sides that are congruent. Why do we get a **kite** when we reflect any triangle across its longest side?

A **trapezoid** is a 4 sided shape with at least one pair of parallel opposite sides. Why can't the **trapezoid** at left be made by rotating or reflecting a triangle?

(4) Quadrilateral Proofs

(a) Use the definition of a parallelogram to prove that opposite sides are congruent. (Use one or more of the following: add one diagonal to the diagram, congruent alt. int. angles, congruent triangles, $\cong \triangle$'s have \cong corresp. parts.)



(b) Use the definition of a parallelogram and the information you proved in #4a to prove that the diagonals bisect each other. (Use one or more of the following: congruent alt. int. angles, congruent opposite sides, vertical angles, congruent triangles, $\cong \triangle$'s have \cong corresp. parts, the fact that having 2 equal pieces of a segment means that the segment was bisected.)

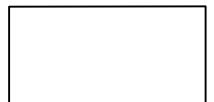
(5)

) Quadrilateral Proofs

 \Box (a) Use the definition of a rectangle to prove that it is a parallelogram. (Use one or more of the following: lines are parallel when the sum of the same side interior angles is 180°.

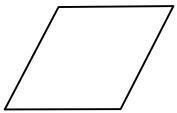
(b) Use the definition of a rectangle and anything you have proven so far to prove that the diagonals are congruent.

(Use one or more of the following: right angles, congruent opp. sides, reflexive prop, $\cong \triangle$'s have \cong corresp. parts.)



(6) Quadrilateral Proofs

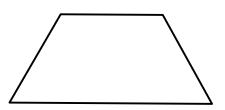
(a) Use the definition of a rhombus to prove that it is a parallelogram. (Use one or more of the following: congruent sides, add a diagonal, congruent triangles, $\cong \triangle$'s have \cong corresp. parts, congruent alt. int. angles with parallel lines.)



 \Box (b) Use the definition of a rhombus to prove that the diagonals are perpendicular. (Use one or more of the following: add both diagonals, congruent sides, congruent triangles, $\cong \triangle$'s have \cong corresp. parts, sum of the angles around a point is 360°.)

(7) Quadrilateral Proofs

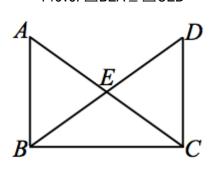
(a) Use the definition of isosceles trapezoid to prove that its base angles are congruent. (Use 2 altitudes to make a rectangle and 2 right triangles, show the triangles are congruent, use congruent parts.)



(b) Use the information from #7 to prove that the diagonals are congruent. (Use congruent parts and overlapping triangles.)

$\square (8) \quad \text{Complex Proofs}$

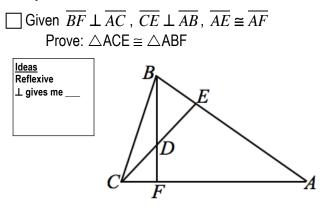
(1) \Box Given $\overline{AB} \perp \overline{BC}$, $\overline{DC} \perp \overline{BC}$, \overline{DB} bisects $\angle ABC$, \overline{AC} bisects $\angle DCB$, $\overline{EB} \cong \overline{EC}$ Prove: $\triangle BEA \cong \triangle CED$

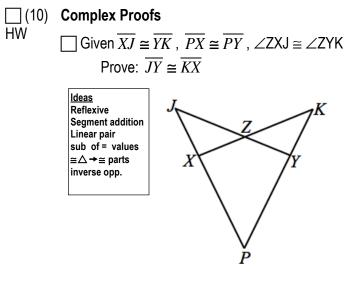


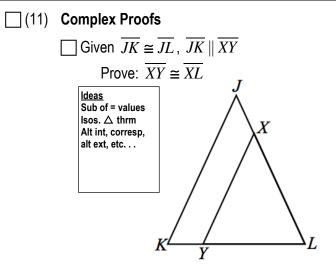
Choose which to use SAS≅ ASA≅ SSS≅ AAS≅ HL≅

(9)

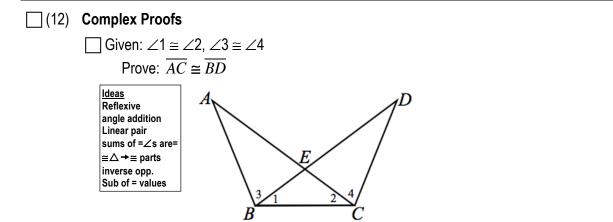
Complex Proofs

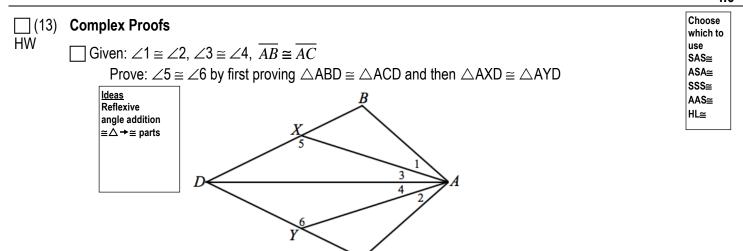






4.6



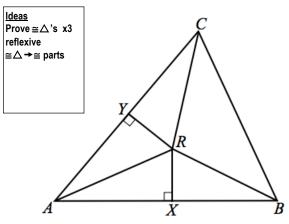


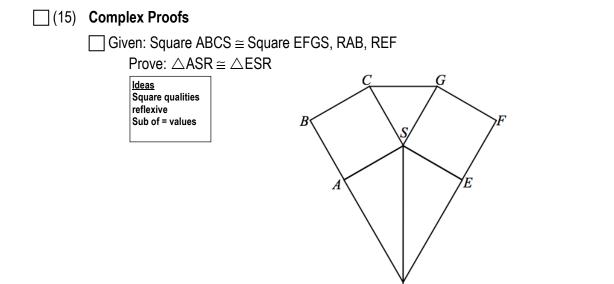
C

(14) Complex Proofs

CHALLENGE

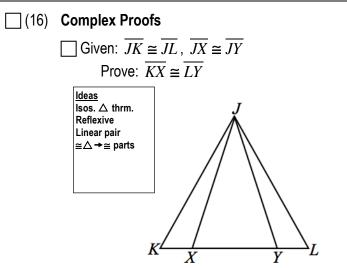
Given: \overline{RX} is the perpendicular bisector of \overline{AB} , \overline{RY} is the perpendicular bisector of \overline{AC} , $\overline{YR} \cong \overline{XR}$. Prove: $\overline{RA} \cong \overline{RB} \cong \overline{RC}$ by first proving that $\triangle RAX \cong \triangle RAY$

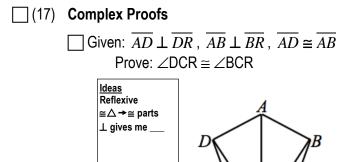




R

4.6

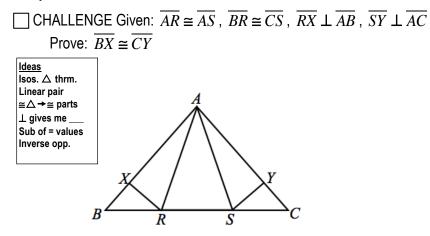


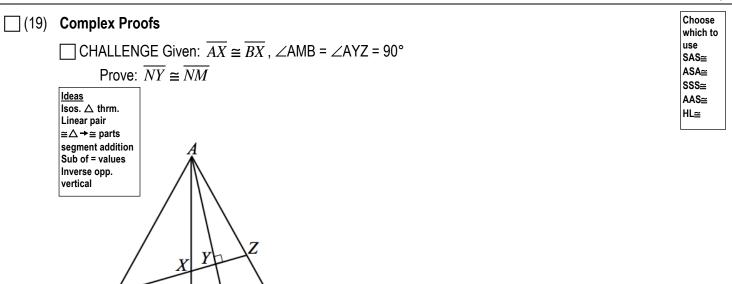


B

R

(18) Complex Proofs



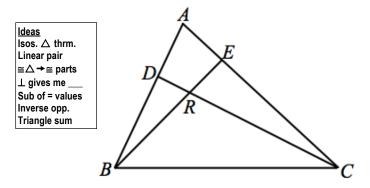


М

N

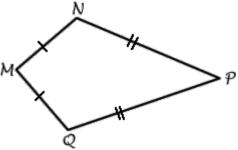
(20) Complex Proofs

 $\Box \text{ CHALLENGE If } \overline{BE} \cong \overline{CE} \text{ , } \overline{DC} \perp \overline{AB} \text{ , } \overline{BE} \perp \overline{AC} \text{ , then } \overline{AE} \cong \overline{RE} \text{ .}$



(21) Exit Ticket

Use the definition of a kite (a quadrilateral with 2 pairs of consecutive = sides) to prove that diagonal \overline{MP} bisects $\angle NPQ$.



(22) Homework

First, draw it, then make a conclusion

(a)	I know that	because
	$\overline{AD} \perp \overline{ER}$ at point D	It is given
-		
-		

🗌 (b)	I know that	because
	\overline{MN} bisects $\angle AND$	It is given
		•

(23)	Homework First, draw it, then make a conclusion	
	(c) I know that	because
	T is the midpoint of \overline{QY}	It is given

🗌 (d)	I know that	because
	\overline{OR} and \overline{WA} intersect at P	It is given

(e) I know that	beca	ISE
$\angle BOY$ and $\angle TO$	Y are both 90° It is g	ven